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Executive Summary

Force protection, intelligence gathering, and targeting systems all use sensors to collect nec-

essary information about the environment so that intelligent decisions can be made about proper

course of action. In most systems a single sensor type (single mode) is utilized. An investigation

into a multimodal video system for object tracking was conducted. Problems in sensor registration

and tracking arise in this situation and techniques were examined to address these issues.

The multisensor registration problem refers to the need to correlate the spatial locations be-

tween multiple sensors. When multiple types of sensors collect information about a scene they

often dont have the same point of view or same resolution and may collect data at different points

in time. The resulting task is to determine how data from one data set relates to data in another. The

goal is to determine the proper geometric transformation of the data so that spatial correspondence

between the image data sets can be established.

The availability of registered multimode sensing systems enables a variety of interesting ap-

plications of significance to civilian security and military domains. Assessment of threats often

employs evidence gathered over time. Hence, the ability to detect and track objects of potential

interest (vehicles, ordnance, human bodies individually or in crowds, etc.) as they move through a

sensor’s field of regard is a necessary component of such evidence aggregation techniques. Track-

ing systems must incorporate the ability to disambiguate tracks after occlusion, to reacquire and

retrack automatically, and to summarize object dynamics at various levels. Object recognition is

also a component of such systems in that it provides a mechanism for reacquisition of a previously

tracked object.

Algorithms were developed and tested for the multimodal registration and integration/tracking
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problems. All development work was done on a Pentium workstation in C++. All prototype

software was provided.
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Chapter 1

Object Tracking Survey

Object tracking is a crucial research topic within the area of computer vision. The proliferation of

high powered computers and the increasing need for automated surveillance systems have gener-

ated a great deal of interest in object tracking algorithms. Some of the tasks that use object tracking

are:

• Crowd flux statistics. Real time gathering of traffic statistics to direct traffic flow. Using

techniques for human tracking, surveillance systems can automatically compute the flux of

people at important public areas to assist in traffic management.

• Access Control. Analyzing the walking gait to decide the visitor’s qualification for entry.

In security-sensitive areas, only people with a special identity are allowed to enter. When

somebody is about to enter, the system could track and analyze the walking gait to decide

whether the visitor can be cleared for entry.

• Anomalous behaviors detection. Real time monitoring a scene to detect suspicious activities

or unlikely events. Visual surveillance systems set in parking lots and supermarkets could

analyze abnormal behaviors indicative of crime.
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• Video indexing. Automatic annotation and retrieval of videos for multimedia databases.

• Vehicle navigation. Navigating vehicles with path planning and obstacle avoidance capabil-

ities.

Tracking can be defined as the problem of estimating the trajectory of an object as it moves

around a scene. Object tracking, in general, is a challenging problem. Difficulties in tracking

objects can arise due to abrupt object motion, loss of information caused by projection of the 3D

world on a 2D image, changing appearance patterns of both the object and the scene, non-rigid

object structures, occlusions, noise in image and camera motion.

Usually, the tracking problem is simplified by imposing constraints on the motion and appear-

ance of the objects, and by using a priori knowledge. Most of the tracking algorithms assume the

object motion to be smooth. In certain scenarios, one can further constrain the object motion to be

of constant velocity or constant acceleration based on a priori information. Prior knowledge about

the number, size and appearance of the objects can also be used to simplify the problem.

The major difference among the existing tracking algorithms lies in the way they represent

target objects; the way they model the motion; the appearance and the shape of the object and

the image features they use. One primary goal of this survey is to group tracking methods into

appropriate categories and provide comprehensive descriptions of representative methods in each

category.

The remainder of this chapter is organized as follows: Section 1.1 describes object shape repre-

sentations, appearance representations and image features which are usually used in object track-

ing. In section 1.2, we summarize the general strategies for object detection in a scene. We catego-

rize and describe the existing tracking methods in section 1.3. Also, we explain their strengths and

weaknesses at the end of each category. The important issues and future development are discussed

in section 1.4.
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1.1 Object Representation/Image Feature For Tracking

In this section, we will first describe object and appearance representations for tracking and then

address the feature selection issues for tracking.

1.1.1 Object Representation

Commonly used object representations for tracking can be categorized as follows:

• Centroid points. The object can be effectively represented, in some contexts, by centroid

point. In general, this shape representation is suitable only when the tracking objects occupy

very small regions in an image.

• Geometric shapes. The object shape is represented by a rectangle, ellipse, etc. Object motion

in this shape representation is usually modelled by translation, affine or projective transfor-

mation. The primitive geometric shapes are suitable for both rigid objects and non-rigid

objects.

• Contour. The contour representation defines the boundary of the object and is suitable for

representing complex non-rigid objects.

• Articulated shape models. Articulated objects are composed of object parts that are held

together by joints. The relationships between the parts are governed by the model parame-

ters, e.g., joint angle. To represent the constituent parts of the articulated model, one can use

lines, ellipses or cylinders.

1.1.2 Appearance Representation

There are a number of ways to represent the appearance features of objects. Shape representations

can also be combined with the appearance representations for tracking. Some common appearance
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representations in the context of tracking algorithms are given below:

• Probability densities based appearance model. The object appearance can be effectively

modelled by the feature probability density. The probability density estimates of the object

appearance can either be parametric, e.g., Gaussian [1] or Gaussian Mixture model [2], [3],

or non-parametric, e.g., Parzen windows [4], [10] or histograms [5], [11]. The PDF of object

appearance features, e.g., color, can be computed from the image regions specified by the

shape models.

• Templates. Templates are formed using simple geometric shapes or silhouettes [12]. It

carries both spatial and appearance information, but only encodes the appearance of the

objects from one view.

• Multiview models. This representation complements the previous one by encoding different

views of an object. This model can be achieved by training a classifiers, e.g., support vector

machines [13], or by representing all the views of an object using eigenspace decomposition

[14]. Obviously, the appearance information of all views of the tracking objects has to be

available ahead of time.

Object representations are usually chosen according to the tracking application. For example,

if the tracking objects appear very small, centroid point representation is enough [15], [16]. For

objects that have complex shapes, like a human, a contour or a silhouette based representation is

appropriate [6], [7], [17].

1.1.3 Good Features for Tracking

The most desirable property of a visual feature for tracking purpose is its uniqueness, so that the

objects can easily be distinguished in the feature space. Many tracking algorithms use a combi-

nation of features to achieve uniqueness. Most commonly used features include color, texture,
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edge and optical flow. Color is primarily generated by the reflectance of the light from the object

surface. The texture feature measures the variation of the color. Edges are generated by the strong

changes in image intensities. Optical flow represents a dense field of displacement vectors which

defines the translation of each pixel in a region. Selecting the right features is closely related to

the object representation. For example, color is used as a feature for histogram based appearance

representations [11], while, for contour based representation, edges and optical flows are usually

used as features [18].

1.2 Object Detection

Nearly all visual tracking systems start with object detection. Object detection aims at segmenting

regions corresponding to moving objects from the rest of an image. Subsequent processes such

as tracking and behavior recognition are greatly dependent on it. The process of object detection

usually involves background modelling, object segmentation, which intersect each other during

processing

1.2.1 Background Modelling and Subtraction

The basic approach is to maintain a model of the static background and compare the current frame

with the background. A moving object is detected by finding the significant change in the dif-

ference image. Further processing is needed for the pixels regions that are labelled as target

candidates. A connected component algorithm is an important next step and often utilized to

obtain connected regions which are corresponding to the objects. Wren et al. [1] marks the pop-

ularity of background subtraction methods. In their paper, Wren et al. proposed to model the

color of each pixel of a stationary background with a single 3D (YUV color space) Gaussian,

I(x, y) → N(µ(x, y), σ(x, y)) to learn gradual changes over time. The mean µ(x, y) and the co-

variance σ(x, y) are learned in the first several consecutive frames. Once the background model
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is captured, for every pixel (x, y) in the input frame, the Probability of its color coming from

N(µ(x, y), σ(x, y)) is computed, and the pixels that deviate from the background model are la-

belled as the foreground pixels. In many situations, however, a single Gaussian is not enough [20],

since multiple colors may be observed at a certain location due to repetitive object motion, shad-

ows or reflectance from multiple surfaces. A substantial improvement in background modelling

is achieved by using multi-modal statistical models to describe the per pixel background color.

Stauffer and Grimson [19] use a mixture of Gaussians to model the pixel color. In their method,

a pixel in the current frame is checked against the background model by comparing it with every

Gaussian in the mixture model until a matching Gaussian is found. If a match is found, the mean

and variance of the matched Gaussian are updated, otherwise a new Gaussian with the mean equal

to the current pixel color and some initial high variance is introduced into the mixture model. Each

pixel is classified as background or foreground based on what process the matched distribution

represents. Instead of using parametric model to representing pixel process, Elgammal et. al [85]

introduced a novel background model and subtraction technique based on nonparametric statistical

modelling. The model keeps a sample of intensity values for each pixel in the image and uses this

sample to estimate the probability density function of the pixel intensity. The density function is

estimated using kernel density estimation technique. Since this approach is quite general and might

be seen as a generalization of Strauffer and Grimson [19]’s work, the model can approximate any

distribution for the pixel intensity without any assumptions about the underlying distribution shape.

The model can handle situations where the background of the scene is cluttered and not completely

static but contains small motions that are due to moving tree branches and bushes. The model is

updated continuously and therefore adapts to changes in the scene background. Furthermore, the

approach runs in real-time.

Alternatively, the variations of the pixel intensity can be represented as discrete states i.e.,

different events in the environment (e.g., for tracking cars on a highway, image pixels can be in

the background state, the foreground (car) state or the shadow state). Rittscher et al. [20] use
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Hidden Markov Model to classify small blocks of an image as belonging to one of these three

states. Stenger et al. [21] use Hidden Markov Model, in the context of detecting light on and off

events in a room, for the background subtraction.

Oliver et al. [22] adaptively build an eigenspace that models the background. This eigenspace

model describes the range of appearances (e.g., lighting variations over the day, weather variations,

etc.) that have been observed. The eigenspace model is formed by takeing a sample of N images

and computing both the mean µb background image and its covariance matrix Cb. This covariance

matrix can be diagonalized via an eigenvalue decomposition. In order to reduce the dimension-

ality of the space, the author keeps only M most important eigenvectors (eigenbackgrounds) that

encompass all possible illuminations in the field of view. Thus, this approach is less sensitive to

illumination. The foreground objects don’t have a significant contribution to this model, hence

the portions of an image containing a moving object cannot be well described by this eigenspace

model, so the object can be detected by projecting the current image to the Eigenspace and finding

the difference between the reconstructed and actual images. This approach is sensitive to back-

ground variations. Monnet et al. [23], and Zhong et al. [24] addressed the limitation of a static

background model recently. Both of these methods are able to deal with time varying background,

for example, storms, moving clouds. These methods model the image regions as autoregressive

moving average processes to learn and predict the motion patterns in a scene.

Background subtraction techniques are widely used in fixed camera tracking applications be-

cause recent advances are able to model the changing illumination, noise, and the periodic motion

of the background regions and therefore can accurately detect objects in a variety of circumstances.

Moreover, these methods are computationally efficient. In practice, background subtraction pro-

vides incomplete object regions in many instances, i.e., the objects maybe split into several regions

or there may be holes inside the object since there are no guarantees that the object features will

be different from the background features. The most important limitation of background subtrac-

tion is the requirement for stationary cameras. Camera motion usually distorts the background
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models. An extension of these methods to mobile camera can be obtained by regenerating back-

ground models for a small temporal window [27][28][29]. Note that these extensions require that

the motion in successive frames is small.

1.2.2 Video Segmentation

Video segmentation can be defined as the segmentation of image sequences into differently moving

objects (or, more correctly, their projections in the image). In this section previous work on video

segmentation is reviewed.

Comaniciu et. al [30] propose a general nonparametric estimator of density to analyze a com-

plex multimodal feature space and delineate arbitrarily shaped clusters in it. The basic computa-

tional module of the technique is an old pattern recognition procedure called the mean shift. Given

an image, the algorithm is initialized with a large number of hypothesized cluster centers randomly

chosen from the data. Each cluster center is then moved to the mean of the data lying inside the

multi-dimensional ellipsoid centered on the cluster center. The vector defined by the old and the

new cluster centers is called the mean shift vector. The mean shift vector is computed iteratively

until the cluster centers do not change their positions. This segmentation technique requires fine

tuning of various parameters to obtain better segmentation. Another limitation is its high compu-

tational cost.

Graph cut based video segmentation is another very interesting approach . The basic idea of

this approach is: each image pixel is viewed as a vertex of a graph, the similarity between two

pixels is viewed as the weight of the edge of these two vertices, and segmentation is achieved

by cutting edges in the graph to form a good set of connected components. The weights of the

within-component edges will be large compared to the across-component edges. As a result, image

segmentation problem becomes a graph cut problem. Zhi et. al [29] propose the normalized cut to

overcome the over-segmentation problem. In their approach, the cut not only depends on the sum

of the edge weights in the cut, but also on the total connection weight of nodes in each partition to
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all nodes of the graph. For image based segmentation, the weights between the nodes are defined

by the product of the color similarity and the spatial proximity. One limitation in this graph-

cut method is that the processing and memory requirements can be expensive for large images.

However, compared to mean shift segmentation, it requires fewer manually selected parameters.

Optical flow based methods solve video segmentation problem by using characteristics of flow

vectors of moving objects over time to detect moving regions in an image sequence[78]. It com-

putes an approximation to a projection of the 3D velocities of surface points onto the image surface,

from spatial and temporal patterns of image intensity. Once computed, the measurements of image

velocity can be used for segmentation of video sequence. However, the measurement has to be

accurate and dense, providing a close approximation to the 2D motion field, in order to perform

correct segmentation.

Active contour is another way to achieve image segmentation. It evolves a closed contour to

the object’s boundary so that the contour tightly encloses the object region. Evolution is directed

by energy functionals which define the fitness of the contour to the hypothesized object region.

Contour energy functionals have the following form:

E(Γ) =

∫
Eint(v) + Eim(v) + Eext(v)ds

where s is the arc length of the contour Γ, Eext includes regularization constraints, Eim in-

cludes appearance based energy and Eext specifies additional constraints. Eint usually includes

a curvature term, first order or second order continuity terms to find the shortest contour. Eim is

computed from the image gradient which is evaluated around the contour [35, 36], or the color [1],

[38] and texture [2] information which is evaluated inside and outside the object region. Different

variations of the energy functional also exist [35], [36].

An important issue in contour based methods is the contour initialization. A common approach

is to place the contour outside the object region and shrink until the object boundary is encountered

[32]. This constraint is relaxed in region based methods, such that the contour can be initialized
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either inside or outside the object, so that the contour can either expand or shrink respectively,

to fit the object boundary. However, these approaches usually require prior object or background

knowledge. Using multiple frames or a reference frame, initialization can be performed without

building region priors. For instance in [39], the authors used background subtraction to initialize

the contour. Besides the selection of the energy functional and the initialization, another important

issue is to select the right contour representation. The contour is represented either explicitly

or implicitly. In the explicit representation, the relation between the control points is defined

by the spline equations. In the implicitly representation, the contour is represented on a spatial

grid which encodes the signed distances of the grids from the contour with opposite signs for the

object and the background regions. The contour is evolved by modifying the grid values. Both of

these representations have their advantages and disadvantages. For instance, the most important

advantage of the implicit representation over the explicit representation is its flexibility to allow

topology changes. However, due to representing the contour on a grid, contour evolution using

implicit representation is computationally more expensive than the explicit representation.

Table 1.1: Object Detection Categories

Categories Representative Work

Background Gaussian Mixture Model [19]

Modelling Eigenbackground [22]

And Nonparametric Model [10]

Subtraction Dynamic texture background [23]

Video Mean Shift [80]

Segmentation Active Contours [36]

Techniques Optical Flow [79]
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1.3 Object Tracking

Object tracking can be defined as locating the object and finding the region it encompasses in the

image at every time instant. These two operations can be performed separately or jointly. For

instance, first the regions of interest can be found by a detection algorithm and then they can be

corresponded with the objects previously observed. Alternatively, the regions corresponding to

the objects can be estimated iteratively, given the previous location and some similarity criteria.

In either case, it is necessary to represent the region that the object encompasses using one of

the shape models described in Section 1.1. The modelling of object motion directly depends on

its representation. For example, if an object is represented as a point then only a translational

model completely defines its motion. If a geometric shape representation is used then parametric

motion models like affine or projective transformations can be used. These representations can

approximate the motion of rigid objects in the scene. For non-rigid objects, contours are the most

descriptive representation and both parametric and non-parametric models can be used to specify

their motion.

The tracking approaches can be broadly classified into three categories: Tracking by point

correspondence, by matching geometric regions, and by contour evolution.

These methods usually use a combination of shape and appearance to model the object. For

example an object can be represented by a rectangular template, or by an elliptical shape and an

associated histogram. Objects are tracked by estimating the parametric transformation of the shape

model in consecutive frames. Object detection is required only in the first frame for these methods.

Tracking is performed by estimating the object contour, given an initial contour from the previ-

ous frame. This essentially can be considered as segmentation of each frame using priors obtained

from previous images.
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Table 1.2: Object Tracking Categories

Categories Representative Work

Tracking by Point Correspondence Salari tracker [47]

Veenman tracker [15]

Kalman Filter [51]

JPDAF[67], PMHT [59]

Tracking by matching geometric regions Mean Shift [11]

KLT [42]

Layering [67]

Eigentracking [14]

SVM tracker [13]

Tracking by contour evolution Condensation [71]

JPDAF+HMM [57]

Variational methods [77]

Heuristic methods [36]
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1.3.1 Tracking by Point Correspondence

Tracking can be formulated as correspondence of detected objects represented by points across

frames. Point correspondence is a complicated problem, especially in the presence of occlusions,

misdetections, entries and exits of objects. Overall, the object correspondence approaches can

be divided into two broad categories, namely deterministic methods and statistical methods. The

deterministic methods use ”qualitative motion heuristics” [15] to constrain the correspondence

problem. The correspondence solution is found through a combinatorial optimization scheme. On

the other hand, probabilistic methods explicitly take the object measurement and model uncertain-

ties into account to establish correspondence. The object state consists of object kinematics such

as position, velocity and acceleration. A Maximum a Posteriori (MAP) estimate of the object state

is calculated at each time instant. Below, we describe the tracking approaches belonging to these

two subcategories in detail.

Deterministic Methods for Correspondence

The deterministic methods for correspondence define a cost of associating each object in frame

t − 1 to a single object in frame t using a set of motion constraints. Minimization of the corre-

spondence cost (e.g., proximity, Maximum velocity, Small velocity change, etc.) is formulated as

a combinatorial optimization problem. A solution, which consists of one-to-one correspondences

among all possible associations, can be obtained by optimal assignment methods, e.g., the Hun-

garian algorithm or greedy search methods. Sethi et. al [46] solve the correspondence by a greedy

approach based on the proximity and rigidity constraints. Their algorithm considers two consecu-

tive frames, and is initialized by the nearest neighbor criterion. The correspondences are exchanged

iteratively to minimize the cost. A modified version of the same algorithm is also analyzed, which

computes the correspondences in the backward direction (from the last frame to the first frame) in

addition to the forward direction. This method cannot handle occlusions, entries or exits. Salari

et. al [47] handle these problems by first establishing correspondence for the detected points and
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then extending the tracking of the missing objects by adding a number of hypothetical points. Ran-

garajan et. al [48] propose a greedy approach, which is constrained by proximal uniformity. Initial

correspondences are obtained by computing the gradient based optical flow vector in the first two

frames. The method does not address entry and exit of objects. If the number of detected points

decreases occlusion or misdetection is assumed. Occlusion is handled by establishing the corre-

spondence for the detected objects in the current frame. For the remaining objects, the position is

predicted based on a constant velocity assumption. In the work by Intille et al. [49], which uses a

slightly modified version of [48] for matching centroids of objects, the objects are detected using

background subtraction. The authors explicitly handle the change in number of objects by exam-

ining specific regions in the image, for example, a door, to detect entries/exits before computing

the correspondence. Veenman et al. [15] extend the work of [49, 51] by using common motion

constraints for correspondence. The algorithm is initialized by generating the initial tracks using

a two-pass algorithm, and the cost function is minimized by the Hungarian assignment algorithm

in two consecutive frames. This approach can handle occlusion and misdetection errors, however,

it is assumed that the number of objects is the same throughout the sequence, i.e., no object enters

or exits. Shafique et. al [16] propose a multi-frame approach to preserve temporal coherency of

the speed and position. They represent the correspondence as a graph theoretic problem. Multiple

frame correspondence relates to finding the best unique path for each point. For mis-detected or

occluded objects, the path will consist of missing positions in corresponding frames. The directed

graph, which is generated using the points in k frames, is converted to a bipartite graph by splitting

each node (object) into two (+ and -) nodes and representing directed edges as undirected edges

from + to - nodes. The correspondence is then established by a greedy algorithm.

Statistical Methods for Correspondence

The object motions undergo random perturbations. Furthermore, measurements obtained from sen-

sors invariably contain noise. The statistical correspondence methods use the state space approach
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to model the object properties such as position, velocity and acceleration. These methods treat

the tracking problem as inferring the object state by taking the measurement and the model un-

certainties into account. Measurements usually consist of the object position in the image, which

is obtained by a detection mechanism. Below, we will discuss the probabilistic state estimation

methods in the context of point tracking, however it should be noted that these methods can be

used in general to estimate the state of any time varying system.

Consider a moving object in the scene. The information representing the object, e.g., location

is defined by a sequence of states X t : 1, 2, ... The change in state over time is governed by the

dynamic equation,

X t = f(X t−1) + W t

The relationship between the measurement and the state is specified by the measurement equa-

tion:

Zt = h(X t, N t)

The objective of tracking is to estimate the state X t given all the measurements up to that

moment, or equivalently, to construct the probability density function p(X t|Z1,...t). The optimal

solution is provided by the recursive Bayesian filter which solves the problem in two steps. The

prediction step uses the dynamic equation and the already computed PDF of the state at previous

time to derive the prior PDF of the current state. Then, the correction step employs the Bayes

formula to computer the posterior PDF p(X t|Z1,...t) using the likelihood function p(Z t|X t). If

there is only one object in the scene, then the state can be simply estimated by the two steps defined

hitherto. On the other hand, if there are multiple objects in the scene then measurements need to

be associated with the corresponding object states. We discuss the two cases in the following

For the single object case, if the dynamic and measurement equations are both linear, and the

noise have a Gaussian distribution, then the optimal state estimate is given by the Kalman Filter.
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In the general case, state estimation can be performed by using particle filters.

The Kalman filter addresses the general problem of trying to estimate the state of a discrete-

time controlled process that is governed by the linear stochastic difference equation. It assumed

the states of the system to be distributed as a Gaussian.

The state update model of the Kalman filter is:

xk+1 = Akxk + Bkuk + wk

The observation model that relates the measurement to the current state is:

zk = Hkxk + vk

where,wk and vk represent the process and measurement noise (respectively). They are as-

sumed to be independent (of each other), white, and with normal probability distributions

P (w) → N(0, Q)

P (v) → N(0, R)

The Kalman filter algorithm proceeds in the following way:

1) Predict the current state given the previous information:

yk = Axt−1 + But−1

2) Predict error of the predicted state:

Et = APt−1A
T + Q

3) Estimate correction gain between actual and predicted observations:

Kt = EtH
T (HEtH

T + R)−1

18



4) Estimate new state given prediction and correction from Observations:

xt = yt + Kt(zt − Hyt)

5) Estimate error of the estimated state:

Pt = (I − KtH)Et

The Kalman filter has been extensively used in the vision community for tracking. Broida and

Chellappa [51] used Kalman filters to track points in noisy images. In stereo camera based object

tracking, Beymer and Konolige [52] use it for predicting the object’s position and speed in x-z

dimensions. Rosales and Sclaroff [56] use the extended Kalman filter to estimate the 3D trajectory

of an object from 2D motion. A Matlab toolbox for Kalman filtering is available at [54].

One limitation of the Kalman filter is the assumption that the state variables are normally

distributed (Gaussian). Thus modeling state variables that do not have Gaussian distributions with

the Kalman filters will result in poor state estimations. This limitation can be overcome by using

particle filtering [55].

In particle filtering, the conditional state density p(Xt|Zt) at time t is represented by a set of

samples {snt : n = 1, ..., N} particles with weights π
(n)
t (sampling probability). The weights

define the importance of a sample. The procedure of the particle filtering algorithm can be stated

as follows:

1) Select N random samples, by generating a uniformly distributed random number, from the

sample set {snt : n = 1, ..., N}
2) Predict a new sample s

(n)
t from the a distribution centered at s

(n)
t−1

3) Correct the new sample s
(n)
t using dynamic models and Kalman filter.

4) Update weights π
(n)
t

Note that the Kalman and particle filter described above assume a single measurement at each

time instant, i.e., the state of single object is estimated. Tracking multiple objects requires a joint

solution of data association and state estimation problems.
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For the multiple objects case, we need to deterministically associate the most likely measure-

ment for a particular object to that object’s state, i.e., the correspondence problem needs to be

solved before these filters can be applied. The simplest method to perform correspondence is to

use the nearest neighbor approach. However, if the objects are close to each other, then there is

always a chance that the correspondence is incorrect. An incorrectly associated measurement can

cause the filter to fail to converge.

There exist several statistical data association techniques to tackle this problem. Among them,

Joint Probability Data Association Filtering and Multiple Hypothesis Tracking are two most widely

used techniques for data association. Joint Probability Data Association Filtering is used by Chang

et. al [56] to perform 3D structure reconstruction from a video sequence. Rasmussen et. al[57]

use a constrained Joint Probability Data Association Filtering filter to track regions. The major

limitation of the Joint Probability Data Association Filtering algorithm is its inability to handle

new objects entering the field of view or already tracked objects exiting the field of view. Since

the Joint Probability Data Association Filtering algorithm performs data association of a fixed

number of objects being tracked over two frames, serious errors can arise if there is a change in

the number of objects. The Multiple Hypothesis Tracking algorithm, on the other hand, does not

have this shortcoming: If motion correspondence is established using only two frames, there is

always a finite chance of an incorrect correspondence. Better tracking results can be obtained if

the correspondence decision is deferred until several frames have been examined. The Multiple

Hypothesis Tracking algorithm maintains several correspondence hypotheses for each object at

each time frame [59]. The final track of the object is the most likely set of correspondences over

the time period of its observation. The algorithm has the ability to create new tracks for objects

entering the field of view and terminate tracks for objects exiting the field of view. It can also

handle occlusions, i.e., continuation of a track even if some of the measurements from an object

are missing.

Multiple Hypothesis Tracking is an iterative algorithm. An iteration begins with a set of current
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track hypotheses. Each hypothesis is a collection of disjoint tracks. For each hypothesis, prediction

of each object’s position is made for the next frame, and then the predictions are compared with

actual measurements by evaluating a distance measure. A set of correspondences (associations) are

established for each hypothesis based on the distance measure, which introduces new hypotheses

for the next iteration. Each new hypothesis represents a new set of tracks based on the current

measurements. Note that each measurement can belong to a new object entering the field of view,

a previously tracked object, or a spurious measurement. Moreover, a measurement may not be

assigned to an object because the object may have exited the field of view, or a measurement

corresponding to an object may not be obtained. The latter happens when the object is occluded or

it is not detected due to noise.

Note that Multiple Hypothesis Tracking makes associations in a deterministic sense and ex-

haustively enumerates all possible associations. To reduce the computational load, Streit et. al[59]

propose a probabilistic Multiple Hypothesis Tracking in which the associations are considered to

be statistically independent random variables. Thus there is no requirement for exhaustive enumer-

ation of associations. Recently, particle filters that handle multiple measurements to track multiple

objects have been proposed by Hue et al. [60]. In this method the data association is handled in

similar manner to Probability Multiple Hypothesis Tracking, but the state estimation is achieved

through particle filters.

The Multiple Hypothesis Tracking algorithm is computationally exponential both in memory

and time. To overcome this limitation, Cox et. al [61] use Murty’s [62] algorithm to determine

the k-best hypotheses in polynomial time for tracking interest-points. Cham et. al [63] use the

multiple hypothesis framework to track the complete human body.

Discussion and Evaluation

In order to tackle noisy or missing observations, deterministic point trackers use heuristic con-

straints, i.e., common motion [15] or proximal uniformity [48]. These methods usually use a
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greedy approach to establish the correspondence by minimizing a cost function. Thus the solution

is not necessarily optimal. Statistical point tracking methods explicitly model the measurement

and model uncertainties for tracking. These uncertainties are usually assumed to be in the form of

normally distributed noise. However, the assumption that measurements are normally distributed

around their predicted position may not hold. Moreover, in many cases the noise parameters are

not known. In the case of valid assumptions on distributions and noise, Kalman filters [64] and

Multiple Hypothesis Tracking [59] give optimal solutions.

Table 1.3: Object Tracking Categories

Obj No. Entry Exit Occlusion Optimal

Salari [47] Multi Yes Yes Yes No

Veenman [15] Multi No No Yes Yes

Multiframe [16] Multi Yes Yes Yes No

Kalman [64] Single No No No Yes

JPDAF [64] Multi No No No No

MHT [61] Multi Yes Yes Yes Yes

In Table 1.3, we provide a qualitative comparison of point correspondence tracking algorithm

based on their ability to deal with entries of new objects, exits of objects, missing observations

(occlusion) and to provide optimal solutions for correspondences.

1.3.2 Tracking by Matching Geometric Regions

Given the object in the first frame, these trackers compute the parametric motion, e.g., translation,

translation and rotation, and affine transformation, of the object in subsequent frames. These

algorithms differ in terms of the appearance representation used, the number of objects tracked
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and the method used to estimate the motion parameters. We divide these tracking methods into

two subcategories based on the appearance representation used, namely templates and density

based appearance models, and multi-view appearance models.

Tracking by Template and Density based Appearance Models

Templates and density based appearance models have been widely used in the area of tracking. In

general, these trackers model the object and its motion independently of the other objects in the

scene. However, in the case of multi-object tracking, the independence assumption may not be

valid. We divide the trackers in this category into two sub-categories based on whether the objects

are tracked individually or jointly.

For tracking single objects case, The most common approach in this category is ”template

matching”. Template matching is a brute force method of searching the image, for a region similar

to the object template.The position of the template in the current image is computed by a similarity

measure, e.g., cross correlation. Usually image intensities or color features are used to form the

templates. Since image intensity is very sensitive to illumination changes, image gradients [65]

can also be used as features. A limitation of template matching is high computation cost due to the

brute force search. To reduce the computational cost, researchers usually limit the object search to

the vicinity of its previous position.

Note that, instead of templates, other object representations can also be used for tracking,

for instance, color histograms or mixture models can be computed by using the pixels inside the

rectangular or ellipsoidal regions. Fieguth et. al [12] generate object models by finding the mean

color of the pixels inside the rectangular object region. To reduce computational complexity, they

search for the object in eight neighboring locations. The similarity between the object model, M,

and the hypothesized position, H, is computed by evaluating the ratio between the color means

computed from M and H. The position that provides the highest ratio is selected as the current

object location.
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Comaniciu et. al [11] use a weighted histogram computed from an elliptical region to represent

the object. Instead of performing a brute force search for locating the object, they use the mean shift

procedure. The mean shift tracker maximizes the appearance similarity iteratively by comparing

the histograms of the object, Q, and the window around the hypothesized object location, P. At

each iteration, the mean shift vector is computed such that the histogram similarity is increased.

This process is repeated until convergence is achieved. For histogram generation, the authors use

a weighting scheme defined by a spatial kernel which gives higher weights to the pixels closer to

the object center.

An obvious advantage of the mean shift tracker over the standard template matching is the

elimination of a brute force search, and the computation of the translation of the object patch in a

small number of iterations. However, mean shift tracking requires that a portion of the object is

inside the elliptical region upon initialization.

Shi et. al[42] propose the KLT tracker based on the principle that only good features can be

tracked well. Their approach consists of two steps. The first step finds the translation of an interest

point and the second step monitors the quality of each interest point. Given a set of interest points

computed using the KLT detector, the translation of the patch centered on the point is iteratively

computed. Once the new location of the interest point is obtained, the authors compute the affine

transformation between the corresponding patches in consecutive frames. If the sum of square

differences between the current patch and the projected patch is small, they continue tracking the

feature, otherwise the feature is eliminated.

Jepson et al. [66] propose an object tracker that tracks an object as a three component mix-

ture, consisting of the stable appearance features, transient features and noise process. The stable

component identifies the most reliable appearance for motion estimation, i.e., the regions of the

object whose appearance does not quickly change over time. The transient component identifies

the quickly changing pixels. The noise component handles the outliers in the object appearance,

which arise due to noise. An online version of the EM algorithm is used to learn the parameters
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of this three component mixture. The authors use the phase of the steerable filter responses as

features for appearance representation. The object shape is represented by an ellipse. The motion

of the object is calculated in terms of warping the tracked region from one frame to the next one.

The warping transformation consists of translation, rotation and scale parameters. A weighted

combination of the stable and transient components is used to determine the warping parameters.

The advantage of learning stable and transient features is that one can give more weight to stable

features for tracking, for example, if the face of a person who is talking is being tracked, then the

forehead or nose region can provide a better match to the face in the next frame as opposed to the

mouth of the person.

For tracking multiple objects case, modelling objects individually does not take into account

the interaction between multiple objects and between objects and background during the course of

tracking. An example interaction between objects can be one object partially or completely occlud-

ing the other. The tracking methods given below model the complete image, i.e., the background

and all moving objects are explicitly tracked.

Tao et al. [67] propose an object tracking method based on modelling the whole image, as a

set of layers. The representation includes a single background layer and one layer for each object.

Each layer consists of a shape prior, motion model, and layer appearance. A layering is performed

by first compensating the background motion modelled by projective motion, such that the object’s

motion can be estimated from the compensated image using 2D parametric motion. Then, each

pixel’s probability of belonging to a layer is computed based on the object’s previous motion and

shape characteristics. Any pixel far from a layer is assigned a uniform background probability.

Later, the object’s appearance (intensity, color) probability is coupled with to obtain the final layer

estimate. Due to the difficulty in simultaneously estimating the parameters, the authors individually

estimate one set while fixing the others. For instance, they first estimate layer ownership using

intensity for each pixel, then they estimate the motion using appearance probabilities and finally

update layer ownership using this motion. The unknowns for each object are iteratively estimated
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until the layer ownership probabilities are maximized.

Isard and MacCormick [71] propose joint modelling of the background and foreground regions

for tracking. The background appearance is represented by a mixture of Gaussians for the back-

ground over small patches. The appearance of all foreground objects is modelled by a mixture of

Gaussians. The shape of objects is modelled as cylinders. They assume the ground plane is known,

thus the 3D object positions can be computed. Tracking is achieved by using particle filters, where

the state vector includes the 3D position, shape and velocity of all objects in the scene. They

propose a modified prediction and correction scheme for particle filtering, which can increase or

decrease the size of the state vector to include or remove objects. The method can also tolerate

occlusion between objects. However, the maximum number of objects in the scene is required

to be predefined. Another limitation of the approach is the use of same appearance model for all

foreground objects and it requires training to model the foreground regions.

Tracking by Multi-view Appearance Models

In the aforementioned tracking methods, the appearance models, like histograms and templates are

usually generated online. Thus these models represent the information gathered about the object

from the most recent observations. The objects may appear different from different views and if the

object view changes dramatically during tracking, the appearance model may no longer be valid

and the track of the object might be lost. To overcome this problem, different views of the object

can be learned off-line and used for tracking.

Black et. al [14] propose a subspace based approach to compute the affine transformation from

the current image of the object to the image reconstructed using eigenvectors. First, a subspace

representation of the appearance of an object is built using Principal Component Analysis, then

the transformation from the image to the Eigenspace is computed by minimizing the so-called sub-

space constancy equation, which evaluates the difference between the image reconstructed using

the eigenvectors and the input image. Minimization is performed in two steps: finding subspace co-
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efficients and computing affine parameters. In the first step, the affine parameters are fixed and the

subspace coefficients are computed. In the second step, using the new subspace coefficients, affine

parameters are computed. Based on this, tracking is performed by estimating the affine parameters

iteratively until the difference between the input image and the projected image is minimized.

Avidan [13] uses a SVM classifier for tracking. SVM is a general classification scheme that,

given a set of positive and negative training examples, finds the best separating hyper-plane be-

tween the two classes [69]. During testing, the SVM gives a score to the test data indicating the

degree of membership of the test data to the positive class. For SVM based trackers, the positive

examples consist of the images of the object to be tracked and the negative examples of all other

things that are not to be tracked. Generally negative examples consist of background regions that

could be confused with the object. Avidan’s tracking method, instead of trying to minimize the

intensity difference of a template from image regions, tries to maximize the SVM classification

score over image regions in order to determine the location of the object.

Discussion and Evaluation

Geometric shape models are suitable representations for rigid objects, though they have also been

used in the context of tracking non rigid objects. These tracking methods model the appearance by

templates, probability densities or multi-view models. The motion is defined in terms of transla-

tion, translation+rotation, affine or projective transformation.

The methods that use gradient descent based minimization for motion estimation require over-

lap between object regions in successive frames, however this assumption is valid for many track-

ing scenarios.

Table 1.4 qualitatively compare tracking algorithms in the section according to the criteria:

tracking single or multiple objects, ability to handle occlusion, requirement for training, and re-

quirement of manual initialization.
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Table 1.4: Qualitative Comparison of Geometric Model Tracking

Obj No. Train Occlusion User Init.

Simple template matching single No Partial Yes

Mean shift [11] single No Partial Yes

KLT [42] Single No Partial Yes

Appearance Tracking [66] Single No Partial Yes

Layering [67] Multi No Full No

Bramble [68] Multi Yes Full No

EigenTracker [14] Single Yes Partial Yes

SVM [13] Single Yes Partial Yes

1.3.3 Tracking by Contour Evolution

The goal of a contour based object tracker is to find the boundary between the object and the

background in each frame, such that the object region is tightly enclosed within the contour. We

can categorize the contour based object trackers into two categories based on how the contour is

evolved. The first category of contour trackers uses state space models to evolve the contour. The

second category performs direct minimization of a contour energy functional.

Tracking using State Space Models

In this section, we will discuss tracking object contours that use the probabilistic state space ap-

proaches to track the object. The object’s state is defined in terms of the shape and the motion

parameters of the contour. The state is updated at each time instant such that the contour’s a poste-

riori probability is maximized. The posterior probability depends on the prior state and the current
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likelihood, which is usually defined in terms of the distance of the contour from observed edges.

Terzopoulos et. al [70] define the object state by the dynamics of the control points. The

dynamics of the control points are modelled in terms of a spring model, which moves the control

points based on the spring stiffness parameters. The new state (spring parameters) of the contour is

predicted using Kalman filters. The correction step uses the image observations which are defined

in terms of the image gradients.

Isard et. al [71] define the object state in terms of spline shape parameters and affine motion

parameters. The measurements consist of image edges computed in the normal direction to the

contour. The state is updated using a particle filter. In order to obtain initial samples for the filter,

they compute the state variables from the contours extracted in consecutive frames during a training

phase. During the testing phase, the current state variables are estimated through particle filtering

based on the edge observations along normal lines at the control points on the contour.

MacCormick and Blake [72] extend the particle filter based object tracker in [71] to track

multiple objects by including the ”exclusion principle” for handling occlusion. The exclusion

principle integrates into the sampling step of the particle filtering framework, such that for two

objects, if a feature is lying in the observation space of both objects then it contributes more to the

samples of the object which is occluding the other object. Since the exclusion principle is only

defined between two objects, this approach can track at most two objects undergoing occlusion at

any time instant.

Chen et al. [73] propose a contour tracker, where the contour is parameterized as an ellipse.

Each contour node has an associated Hidden Markov Model and the state of each Hidden Markov

Model is defined by the points lying on the lines normal to the contour control point. The obser-

vation likelihood of the contour depends on the background and the foreground partitions defined

by the edge along the normal line on contour control points. The state transition probabilities of

the Hidden Markov Model are estimated using the Joint Probability Data Association Filtering.

Given the observation likelihood and the state transition probabilities the current contour state is
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estimated using the Viterbi algorithm [74]. After the contour is approximated, an ellipse is fit to

enforce the elliptical shape constraint.

The methods discussed above represent the contours using explicit representation, e.g., para-

metric spline. Explicit representations do not allow topology changes, such as region split or merge

[75]. Next, we will discuss contour tracking methods based on direct minimization of an energy

functional. These methods can use implicit representations and allow topology changes.

Tracking by Direct Minimization of Contour Energy Functional

In this category, algorithms evolve the contour onto the object region by minimizing the energy

functional. The contour energy is computed using temporal information in the form of either the

temporal gradient [79, 18], or appearance models computed from object and background regions

[36].

Contour tracking using temporal image gradients is motivated by the extensive work on com-

puting the optical flow: I t+1(x, y) − I t(x − u, y − v) = 0, where I is the image, t is the time, and

(u, v) is the flow vector in the x and the y directions. Bertalmio [76] use this constraint to evolve the

contour in consecutive frames. Their objective was to compute u and v iteratively for each contour

position using the level set representation. At each iteration, contour speed in the normal direction

�n is computed by projecting the gradient magnitude on �n. The authors use two energy functionals,

one for contour tracking, Et and one for intensity morphing, Em : Em(Γ) =
∫ 1

0
Eim(v)ds and

Et(Γ) =
∫ 1

0
Eext(v)ds. The intensity morphing functional, which minimizes intensity changes in

the current and the previous frames, �It = It − It−1 on the hypothesized object contour:

∂F (x, y)

∂t
= �It(x, y)‖ � F (x, y)‖

is coupled with the contour tracking equation:

∂φ(x, y)

∂t
= �It(x, y)�nF�nφ‖ � F (x, y)‖
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and both functionals are minimized simultaneously. For instance, if �It(x, y) ≥ 0, then the

contour moves with the maximum speed in its normal direction and �I t−1(x, y) is morphed into

�It(x, y). On the other hand, if �It(x, y) is negligible, then the evolution speed will be zero.

Similarly, Mansouri [77] uses the optical flow constraint for contour tracking. In contrast to

[77] which computes the flow only on the object boundary, his approach is motivated by computing

the flow vector for each pixel inside the complete object region in a circular neighborhood with

radius r using a brute-force-search. Once the flow vectors are computed, the contour energy, which

is based on the brightness constancy constraint, is evaluated. This process is iteratively performed

until the energy is minimized.

In [18], Cremers and Schnorr use the optical flow as an feature for contour evolution, such that

an object can only have homogeneous flow vectors inside the region. Their energy is a modified

form of the common Mumford-Shah energy [78], which evolves the contour until a region with

homogeneous flow vectors is encountered. They also incorporated the shape priors to better esti-

mate the object shape. The shape priors are generated from a set of object contours, such that each

control point on the contour has an associated Gaussian with a mean of the spatial positions of the

corresponding control points on all the contours along with a standard deviation.

Tracking methods using region priors do not explicitly use the temporal information in the form

of the brightness constancy constraint. In contrast, they use appearance priors generated online.

Tracking is performed by initializing the contour in the current frame with its previous position.

Ronfrad [36] propose a region based contour tracking method. His functional is defined based on

the piecewise stationary image models formulated as Ward distances, which is a measure of image

contrast. Since the resulting energy does not have an analytical form, each contour point is evolved

individually based on its local neighborhood.
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Discussion and Evaluation

The most important advantage of a contour tracker is that it can model a large variety of object

shapes. Contours are represented by explicit (control points and splines) or implicit (level sets)

representations. The use of these representations depends on the context of the application. For

instance, in most cases for tracked objects that do not split or merge, explicit representation is

usually suitable for tracking. However, in some applications such as surveillance, it is important to

keep track of a person leaving an object behind. In the context of contour tracking, when a person

leaves an object, part of the object contour will be placed on the left object (region split). Topology

changes like region split or merge can be handled well by implicit representations.

Contour trackers are employed when tracking the complete region of an object is required. In

the context of region tracking, the precision and recall measures are defined in terms of the inter-

section of the hypothesized and correct object regions. The precision is the ratio of the intersection

to the hypothesized region and recall is the ratio of the intersection to the ground truth. Quali-

tatively, the contour based methods can be compared on the basis of requirement of training and

occlusion handling. Moreover some algorithms only use information on the contour boundary for

evolution while other use the complete region. Generally the region based approaches are more

resilient to noise. A qualitative comparison of contour based approaches is given in Table 1.5.

1.4 Conclusion

In this chapter, we present an extensive survey of object tracking methods. We divide the track-

ing methods into three categories based on the use of object representations: namely, methods

establishing point correspondence, methods using geometric models and methods using contour

evolution. Note that all these classes require object detection at some point. For instance, the point

trackers require detection in every frame, whereas geometric region or contours based trackers

require detection only when the object first appears in the scene. Recognizing the importance of
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Table 1.5: Qualitative Comparison of Contour Based Tracking

Obj No. Train Occlusion Region/Boundary

Ref[73] Single Yes None Boundary

Ref[71] Single Yes None Boundary

Ref[72] Multi Yes Full Boundary

Ref[82] Multi Yes None Boundary

Ref[77] Single No None Region

Ref[76] Single No None Region

Ref[37] Single No None Boundary

Ref[83] Single Yes Partial Region

object detection for tracking systems, we include a short discussion on popular object detection

methods. We provide detailed summaries of object trackers, including discussion on the object

representations, motion models, and the parameter estimation schemes employed by the tracking

algorithms. Moreover, we describe the context of use, degree of applicability, evaluation criteria

and qualitative comparisons of the tracking algorithms.
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Chapter 2

Implementation and Performance of Classic

Tracking Algorithms

The object tracking techniques introduced in previous sections have been intensively studied.

There are many variants exist in each category of the tracking approaches. Furthermore, there

are more papers and more variants every day. But the core ideas behind every variant remain un-

changed, hence cutting to the chase right up front is the best way, in our opinions, to expose those

innovative ideas to the audiences. So in the following subsections, we will discuss those central

ideas, their implementations and performances in a fairly straightforward manner.

2.1 Tracking by Background Modelling and Subtraction

The Basic approach is to maintain a model of the static background and compare the current frame

with the background to locate moving foreground objects (Figure 2.1). Background Subtraction

is probably the simplest idea for tracking moving objects, yet it is one of the most effective and

robust algorithms exists.
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Figure 2.1: The overview of background subtraction.

The static background subtraction method assumes that the background image remains static

throughout the entire video sequence. The background is computed by taking the average of several

frames in the video sequence in which no objects present. Pixels are labelled as object (1) or not

object (0) based on thresholding the absolute intensity difference between the current frame and

background (Figure 2.1).

We implemented a simple background subtraction 2D people tracker. It bases on background

subtraction, combining gap-spanning connected component and size filter techniques. This 2D

tracker is capable of tracking multiple objects (e.g., people, vehicles) moving within the field of

view (FOV). It assumes that the background should be a constant, the camera should be fixed and

the movement of the objects should be salient.

The core algorithm contains four steps:

Step 1: Simple Background Subtraction. Suppose we have several frames that contain only

the background. By taking the average of these frames, we can obtain an approximation of the

background. Then the moving foreground objects can be identified by comparing the current frame

with the approximate background Figure 2.2. Pixels are labelled as object(1) or not object(0) based

on thresholding the absolute intensity between the current frame and background. Figure 2.3 shows

the background subtraction results.

Step 2: Gap-spanning connected component. Noise pixels in the difference image are first
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Figure 2.2: Simple background subtraction.

removed by median filter and erosion. Then, a gap-spanning connected component algorithm is

used to find blobs (there may be more than one).

Due to the small motion in the background and accidental similarity between moving objects

and background, we obtain only a non-perfect detection of moving objects from step 1, i.e. some

true detections are eliminated and the detected foreground objects are split. We can fill those gaps

by using morphological operations (e.g., dilate). After enhancing the detection, the connected

components are labelled by scanning the difference image, pixel-by-pixel (from top to bottom and

left to right) to identify connected pixel regions, i.e. regions of adjacent pixels which share the

same set of intensity values V. (For a binary image V=1; however, in a gray level image V will

take on a range of values, for example: V=51, 52, 53, ..., 77, 78, 79, 80.). Figure 2.4 illustrates the

gap-spanning connected component algorithm.

Step 3: Size filter. Following step 2, we measure a set of properties for each labelled connected

components (blobs). The good properties for tracking are area, color, velocity, etc. We find that

the ”area” property alone will suffice for most cases. By selecting only the blobs whose areas
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Figure 2.3: Background subtraction results (a) Frame No.211, (b) The difference image between

(a) and background.

Figure 2.4: Gap spanning connected components.

are larger than a threshold (450 was used in our implementation.), we size-filtered the difference

image. The blobs that survive this step are considered as saliently moving objects (Figure 2.5).

Step 4. Compute the size of each blob and plot the bounding boxes around the moving objects.

Simple Background Subtraction is a reasonable solution to extracting the shape of moving

objects, as we can see in Figure 2.5. One important drawback of simple background subtraction

is that it is very sensitive to changing illumination and unimportant movement of the background,

for example, trees blowing in the wind, reflections of sunlight off of cars or water. Another serious

drawback is that it cannot handle movement of the camera. These are the reasons why statistical

background subtraction is proposed. As we discuss in the previous section, there are two models

for representing the background: one is parametric and the other is non-parametric. The parametric
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Figure 2.5: Grouping pixels into blobs. (a) The difference image. (b) after median filter, erosion

and size filter. (c) dilate and label the connected components.

Figure 2.6: Frame No.211

technique models the pixel intensity by a mixture of K gaussian distributions (K is a small number

from 3 to 5) to model variations in the background:

Pr(xt) =

K∑
j=1

wj

(2π)
d
2 |Σ−1

j |
e−

1
2
(xt−µj)

T Σ−1
j (xt−µj) (2.1)

where wj is the weight, µj is the mean and Σj = σ2
j I is the covariance for the jth distribution.

The K distributions are ordered based on wj

σ2
j

and the first B distributions are used as a model of the

background of the scene, where B is estimated as
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Figure 2.7: Only pixels near the boundary are detected on the object

B = argminε(

∑b
j=1 wj∑K
j=1 wj

> T ) (2.2)

The threshold T is the fraction of the total weight given to the background model. Background

subtraction is performed by marking any pixel that is more than 2.5σ away from any of the B

distributions as a foreground pixel.

In the case where the background has very high frequency variations, this parametric method

fails to achieve sensitive detection. When all variations occur in a very short period of time (e.g., 30

seconds), modelling the background variations with a small number of gaussian distributions will

not be accurate. Furthermore, the very wide background distribution will result in poor detection

because most of the gray level spectrum would be covered by the background model.

Non-parametric model, on the other hand, can accurately model the background and adapt very

quickly to background changes. Let x1, x2, ..., xN be a recent sample of intensity values for a pixel.

Using this sample, the probability density function that this pixel will have intensity value x t at

time t can be non-parametrically estimated using the kernel estimator K as:

Pr(xt) =
1

N

N∑
i=1

K(xt − xi) (2.3)

Usually, the kernel estimator function, K, is chosen to be a gaussian density function N(0, Σ).

We can also reasonably assume independence between the different color channels with a different

kernel bandwidths σ2
j for the jth color channel.
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Using this probability estimate, the pixel is considered a foreground pixel if Pr(xt) < T where

T is a global threshold over all the image that can be adjusted to achieve a desired percentage

of false positives. It is easy to see that nonparametric model with a gaussian kernel estimator

function is actually a generalization of the Gaussian mixture model, where each single sample of

the N samples is considered to be a Gaussian distribution N(0, Σ) by itself. This allows us to

estimate the density function more accurately and depending only on recent information from the

sequence. This also enables the model to quickly forget about the past and concentrate more on

recent observation, which typically require large amounts of data to be both accurate and unbiased.

An extension of simple background subtraction to mobile camera can be obtained by finding

the absolute difference between the current frame and the previous frame instead of the background

frame (Frame Differencing).

Frame differencing is very quick to adapt to changes in lighting or motion. Objects that stop are

no longer detected. Objects that start up do not leave behind ghosts. However, frame differencing

only detects the leading and trailing edge of a uniformly colored object. As a result (Figure 2.7),

very few pixels on the object are labeled, and it is very hard to detect the entire object that is

moving before the camera.

One way to solve this problem is to adjust the temporal scale (frame rate) at which we perform

two-frame differencing, define:

D(N) = |I(t) − I(t + N)| (2.4)

Figure 2.8 shows the results of frame differencing with N = −1,−3,−5,−9,−15. Obviously,

we can capture more complete object silhouette as N increases. But we also see two copies of the

same object (one where the object used to be and one where it is now), this observation motivates

the three-frame differencing.

In three-frame differencing, we first choose a good frame-rate N which depends on the size

and speed of the object of interest. Then, D(+N) and D(−N) are computed. D(+N) contains

the object’s current position and its future position, D(−N) contains the object’s current position
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Figure 2.8: Frame Differencing with N = -1, -3, -5, -9, -15

Figure 2.9: The AND operation

and its past position. Next, the logical AND operation is taken between D(+N) and D(−N). The

AND operation results in an image with only the object in its current position (Figure 2.9). The

following steps after this is basically the same as those in simple background subtraction.

We implement three-frame differencing algorithm to track an aerial video sequence from naval

data test set (Figure 2.10). The moving vehicles present throughout the entire sequence, so there is

no way to capture the background. But three-frame differencing works well here. N = 3 is chosen

as a good frame rate.

The trackers we implement in this section is perhaps the simplest tracking implementation and
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Figure 2.10: Frame Differencing Tracking with N = 3. (a) input image; (b)output image; (c)

frame differencing result; (d) gap-spanning (c)

in many application scenarios, especially those with camera fixed, the core algorithm provides the

first step for tracking and tracking initializations.

2.2 Tracking by Point Correspondence

In Point Correspondence tracking, Objects detected in consecutive frames are associated based

on the previous object state, which can include motion and shape characteristics of the object.

This approach requires an external mechanism to detect the objects in every frame. This section
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Figure 2.11: A snapshot of the video sequence of a bouncing ball

introduces the implementation of point correspondence tracking through a very simple example:

tracking a bouncing ball. We will stress on the statistical method. Figure 2.11 is a snapshot of this

video sequence.

We use three different tracking techniques which have been discussed in the previous section:

• Background Subtraction Tracking. Removal of irrelevant background and detection of the

ball. It can also be utilized to detect the objects and capture the object’s state in every frame.

• Kalman Filter Tracking. Tracking noisy motion.

• Particle Filter Tracking. Coping with events and noise with condensation tracking

2.2.1 Background Subtraction Tracking

Following the discussion before, this implementation is easy enough to understand and is the stan-

dard initializing procedure for many more sophisticated tracking algorithms:

Step 1: Compute the background image by averaging the first few frames contain only the

static background.
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Step 2: For each frame, we subtract background from it and obtain the difference image, then

erode the difference image to remove small noise, finally select the largest, valid object from this

difference image (By valid, we mean the area of the object is larger than a certain threshold, e.g.,

half of the area of the ball.)

Step 3: Compute the center of mass and radius of this largest, valid object and plot the contour

of the ball.

Background subtraction method is very sensitive to noise, random perturbation, motion blur

and poor contrast. One of the ways to improve the result is to incorporate motion model into the

tracking process.

2.2.2 Kalman Filter Tracking

Kalman filter tracking treat the tracking problem as inferring the object state by taking the mea-

surement and the model uncertainties into account. We’ve already discussed the technique, so now

we go directly into implementation. Most important thing is to put the physical model of the ball

moving under gravity into the Kalman filter:

PHYSICAL MODEL OF THE FALLING BALL:

Ball Position: �pt = (xt, yt) — Measured Data

Position update: �pt = �pt−1 + �vt−1 � t

Velocity update: �vt = �vt−1 + �at−1 � t,�at−1 = (0, g)T

State Vector: �xt = (xt, yt, vx,t, vy,t)

INITIALIZATION:

The initial state vector can be chosen randomly. Based on the physical model of the falling ball

(Newton’s law), we can decide the rest of the parameters that are necessary for initializing Kalman

filter:

44



A =




1 0 �t 0

0 1 0 �t

0 0 1 0

0 0 0 1




B�ut =




0

0

0

g � t




We use �t=1 in the program.

H =


 1 0 0 0

0 1 0 0




Q =


 0.01 0.01

0.01 0.01




R =


 0.01 0.01

0.01 0.01




P =


 100 100

100 100




PREDICTION:

1. Predict likely state given what we already know:

�yt = A�xt−1 + B�ut−1

2. Predict error of the predicted state:

Et = APt−1A
T + Q (2.5)
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3. Estimate correction gain:

Kt = EtH
THEtH

T + R
−1

(2.6)

4. Estimate new state given prediction and correction from observations:

�xt = �yt + Kt(�zt − H�yt) (2.7)

5. Estimate error of estimated state:

Pt = (I − KtH)Et (2.8)

Figure 2.12(a,b) shows the tracking results of the Kalman filter, in which the ball is successfully

tracked. We also show some failures in Figure 2.12(c,d). The failure arises mainly because of the

two situations: 1. when the ball stops falling and start to bounce back. In this situation, Kalman

filter processing model assumes the ball is always falling. So the model is predicting the movement

to one direction, while the observation is seeing it moving in the other direction. Kalman filter

combines those two pieces of information, but the result is that the estimated state vector has been

a little bit lower than it really ought to be. 2. When the ball has stopped bouncing and sat on the

table, the model is still predict the ball to be falling, the situation is very similarly to the first one.

That’s why the particle filter tracking comes in. The particle filter tracking, a.k.a. condensation

tracking, uses several key ideas to overcome some of the problems we had with the Kalman filter.

2.2.3 Particle Filter Tracking

One of the key ideas of the particle filter tracking is to keep multiple hypotheses. It is very conve-

nient in this particular case: as well as the ball falling at any particular time, at the next time, the

ball could bounce or stop, so we can use multiple hypotheses to keep tracking of those different

states. Noise observation also needs us to keep multiple hypotheses around and choose the one

that best fit the current time frame.

The outline of particle filter theory is:
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Figure 2.12: (a,b) Kalman filter success, (c,d)Kalman filter failure.

Given a set of N hypotheses at time t − 1, Ht−1 = {�x1,t−1, �x2,t−1, ..., �xN,t−1} with associ-

ated probabilities {p(�x1,t−1), p(�x2,t−1), ..., p(�xN,t−1)}, we repeat N times to generate a new set of

hypotheses Ht:

1. Randomly select a hypothesis �xk,t−1 from Ht with probability p(�xk,t−1)

2. Generate a new state vector �st−1 from Ht with a distribution centered at �xk,t−1.

3. Get new state vector using dynamic model �xt = f(�st−1) and Kalman filter.

4. Evaluate probability p(�zt|�xt) of observed data given state �xt

Next, we will discuss how particle filter could improve the tracking of a bouncing ball.

1. In our implementation, we maintain a set of 100 hypotheses of ball motion vector, at each

time we select one of them by the probability of the vector.
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Figure 2.13: model transition diagram for the falling ball

2. we use estimated covariance matrix P to create state samples �st−1

3. we decide, given the state sample �st−1 , which physical situation the ball should be in

(Bouncing, falling or stop). Each physical situation has a probability associated with it (Figure

2.13). In the program, we set Pb = 0.3, Ps = 0.05.

If it is in STOP situation: set the vertical speed to zero,

If it is in BOUNCE situation: set vy = −0.7 · vy,
Then use Kalman filter,

4. we estimate hypotheses goodness by 1
‖H�xt−�zt‖2 and normalize it to estimate hypotheses

probability.

5. Select top-weighted hypotheses and draw the estimated contour of the ball.

Figure 2.14 shows that Kalman filter failures are fixed by particle filter tracking.

2.3 Tracking by Density Based Appearance Models

In this section, we implemented an efficient, modular target tracking algorithm proposed by Co-

maniciu and Meer [11].

The target objects are represented by regularized histogram, i.e., target model, computed from

a target region (e.g., a person, a football or a plane) which should be specified by the user at the

beginning. Then, the algorithm will search for an optimal target candidate in the next frame, which
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Figure 2.14: (a) Kalman filter failed in this frame, (b) Particle filter succeeded in the same frame

has the largest similarity with target model . The similarity is measured by Bhattacharyya coef-

ficient. Experimental results show that the method has successfully coped with complex camera

motion, partial occlusion of the target, presence of significant clutter, and large variations in target

scale and appearance.

The target model is represented by its probability density function (pdf), In our implementation,

we use the color pdf of the target.

The target model is:

q̂ = q̂u, u = 1...m (2.9)
m∑
u=1

q̂u = 1 (2.10)

where m is the number of bins in the histogram.

49



From pattern recognition, we know that q̂u can be estimated using the following formula:

q̂u = C

n∑
i=1

k(‖y − xi‖2)δ[b(xi) − u] (2.11)

where n is the number of the pixels in the region, y is the center of the region, δ is the Kronecker

delta function, C is the normalization constant.

The target candidate is represented by:

p̂(y) = p̂u(y), u = 1...m (2.12)
m∑
u=1

p̂u = 1 (2.13)

where m is the number of bins in the histogram, y is the center of the region.

p̂u(y) can also be estimated by a formula very similar to q̂u’s:

p̂u(y) = Ch

nh∑
i=1

k(‖y − xi
h

‖
2

)δ[b(xi) − u] (2.14)

where Ch is the normalization constant, nh is the number of pixels in an image.

The similarity between p̂u(y) and q̂u is measured by Bhattacharyya coefficient and the center y

of the target candidate in the next frame is localized by maximizing the Bhattacharyya coefficient.

By employing the mean shift procedure, the optimal new location for the center ŷ1 can be

obtained by the following formula:

ŷ1 =

∑nh

i=1 xiwig(‖ ŷ0−xi

h
‖2

)∑nh

i=1 wig(‖ ŷ0−xi

h
‖2

)
(2.15)

wi =
m∑
u=1

√
q̂u

p̂u(ŷ0)
δ[b(xi) − u] (2.16)

where ŷ0 is the previous location of the center, g(x) = −k ′(x).

The above formula will be further reduced to a much simpler form if we choose Epanechnikov

kernel, hence (2.15) becomes
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ŷ1 =

∑nh

i=1 xiwi∑nh

i=1 wi

(2.17)

The complete algorithm can be implemented as follows:

Given the target model q̂ = q̂u, u = 1...m and its location ŷ0 in the previous frame.

1. Initialize the location of the target in the current frame with ŷ0, compute:

p̂(y0) = p̂u(y0), u = 1...m (2.18)

2. Derive the weights wi=1...nh
.

3. Find the estimated location of the target in the next frame by:

ŷ1 =

∑nh

i=1 xiwi∑nh

i=1 wi

(2.19)

We tested this algorithm on aerial video sequences from Naval Data Test Set (Figure 2.15-

2.20). In those video sequences, the camera moves fast and complexly, hence the background

is very cluttered. Also, in the thermal video sequences, due to the huge similarity between the

background and the target, the moving target is often ”camouflaged” or occluded for a while by

the background. Experimental results show that, as long as the camouflaging period is not too

long, the algorithm can still keep track of the moving target after occlusion.
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Figure 2.15: Kernel-based tracking algorithm tested on aerial videos from Naval Data Test Set I.
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Figure 2.16: Kernel-based tracking algorithm tested on aerial videos from Naval Data Test Set II.
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Figure 2.17: Kernel-based tracking algorithm tested on aerial videos from Naval Data Test Set III.
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Figure 2.18: Kernel-based tracking algorithm tested on aerial videos from Naval Data Test Set IV.
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Figure 2.19: Kernel-based tracking algorithm tested on aerial videos from Naval Data Test Set V.
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Figure 2.20: Kernel-based tracking algorithm tested on aerial videos from Naval Data Test Set VI.
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Chapter 3

Registration Survey

Registration is a task to match two or more pictures taken at different times, from different sensors,

or from different viewpoints[86]. A wide range of algorithms has been developed to register vari-

ous data images. This survey will organize some existing methods and then focus on multi-modal

image registration techniques. In particular, information theoretic methods will be detailed such as

mutual information based registration, entropy based registration, etc.

3.1 Classification of Registration Methods

3.1.1 Classficication Methods

Registration methods can be classified according to different rules. A registration algorithm usu-

ally, without loss of generality, is composed of four components(also called elements)[86]: a fea-

ture space, a search space, a search strategy, a similarity metric. Registration algorithms are then

often classified or named based on the combination of these components, e.g., Fourier based reg-

istration, which is classified by feature space. It is just one or more elements on which some
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reseachers have presented new ideas and hence improved the existing algorithms.

A finer classfication method[87] presented nine basic criteria. Those criteria are the extension

of the four components mentioned in literature [86].The statistics of the classification according to

such criteria shows definite trends in the evolving registration techniques[87].

• Dimensionality

• Nature of registration basis

• Nature of transformation

• Domain of transformation

• Interaction

• Optimization procedure

• Modalities Involved

• Subject

• Object

3.1.2 Explanation on Terms

– Dimensionality

Registration problems can be categorized depending on the number of spatial dimensions involved.

Table 3.1 shows all sorts of registration categories of different dimensionality. In general, 3-D

information is obtained either from image sequences containing stereo information or from 3-D

models constructed based on still images.
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Table 3.1: Registration Dimensionality.

Modality spatial dim = 2 spatial dim = 3

2D/2D only spatial infor is applied same

2D/3D image and 3-D Model -

3D/3D 3-D infor. needs to be constructed time(t) is the 3rd dimension

– Subject

Subject denotes the number of subjects involved in the images to be registered [88]. It can be either

a single one, e.g. the brain images from the same person, or multiple ones, e.g. from different

persons. In the earlier literature [87], J. B. Antoine Maintz etc. described a detailed classification

of subjects in medical image registration:

• Intersubject: the registration uses two images acquired of different patients.

• Intrasubject: the registration uses two images acquired of a single patient.

• Atlas: the registration uses an image and another from a database.

– Search Space[86], also called Nature of transformation[87]

The search space is generally refered to as the class of transformations from which we would like

to find the optimal one to register images[86]. The most common transformations considered in

existing methods are [86][87]:

• rigid

• affine

• projective
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• perspective

• polynomial

search space in most cases is composed of all possible transformations. To reduce the com-

putational cost however, some assumptions are usually made on transformation classes used in

each registration technique. Models can be built to describe the possible transformations and

hence to reduce the search space for calculations, especially when the source of misregistration

is known or can be exactly modeled. As a rule, they are categorized as allowing global or local

transformations[86].

Polynomial transformation is often utilized in global alignment, if other transformations can

not account for the distortions or, if there is not enough information available to model the trans-

formation. A global transformation is given by a single equation or a single set of parameters,

which will be used to map the entire image. While a local transformation maps one image onto

another differently depending on the spatial location. The comparisions of global and local trans-

formations are listed in Table 3.2. This classification corresponds to ”Domain of Transformation”

in literature[87].

Recently, rigid and affine transformation are usually applied as global while curved transfor-

mation as local[87].

– Domain of Transformation

In[87], domain of transformation is refered to as global or local as shown in Table3.2.

– Feature Space[86], also called nature of registration basis[87]

Feature is the information used for matching images. It can be either manually selected by an ex-

pert, or obtained by extracting salient structures. Some correlation methods compute the measures
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Table 3.2: Global and local transformation.

Global Local

Number of Transformation one single multiple

Computational Cost high low

Advantage use the entire image to

compute the transfor-

mation parameters

use only local info and

hence less influenced

by other parts

only on some feature points instead of the entire image to reduce the computational cost. In ad-

dition to low computational cost, feature points can help correspond regions of physical meaning.

Feature selection, to some extent, determines the registration quality as will be described later.

Salient objects are often detected as features in algorithms. We may have to skip the problem of

defining “salient objects”, as it is still an open problem in computer vision. As a rule, the common

features include [89]:

• edges

• contours

• closed-boundary regions

• line intersections

• curves or surfaces

• corner

After being further processed, these features can be represented by representative points, which

are called Control Points(CPs) [86][89]. Control points can be either intrinsic or extrinsic. Intrinsic

control points are markers unrelevant to the image data itself[86]. They are often placed in the
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scene and easily identified, serving as reference points. But there are not always available intrinsic

control points in some cases. More often than not, control points are generated using image data

either manually or automatically, so-called extrinsic. Manual points, i.e., points selected by human

interaction, has advantages over automatical ones in that they can impart subjective information.

They require knowledgeable people and hence this is not always feasible in case where there is a

large amount of data. Therefore, automatical points are often used in some applications. Possible

problems include:

• The number of control points. It can be very big, which increases the computational cost and

accuracy. Meanwhile, too many points may make matching difficult.

• What features should be taken in specific applications?

• Update control points after each iteration? After control points being detected, they can be

matched from a misaligned image to the reference image. Usually, this involves an iteration.

Can those control points be updated? Updating control points means more computational

cost, nevertheless, if the matching/searching algorithm goes on the right way, i.e. it is reg-

istering the misaligned image closer to the reference image, the updation may save some

computaional cost of matching.

• Similarity metric is to measure the distance between feature points. It should be taken into

consideration together with control(feature) points. Consequently, to improve the perfor-

mance of registration, not only can we choose feature points, but also, new similarity metric

can sometimes register better with the existing features.

It is worth pointing out that extrinsic and intrinsic are used differently by literature[86] and

[87]. In [87], “extrinsic registration methods rely on artificial objects attached to the patient. . . The

main drawback of extrinsic registration are the prospective character, i.e., provisions must be made

in the pre-acquisition phase, and the often invasive character of the marker objects. . . . Since

extrinsic methods by definition cannot include patient related image information. . . ”. “ intrinsic

63



methods rely on patient generated image content only. Registration can be based on a limited set of

identified salient points(landmarks), on the alignment of segmented binary structures(segmentation

based), ...”

– Similarity Metric Space

Similarity metric is the ojbect to be optimized by registration. Selecting similarity measure is

closely related with selecting matching features as it measures the similarity between these features

of the float image and refence image. In fact, selected feature has a heavy influence on selecting

similarity metric. Consequently, the two spaces are often considered and selected together with

each other. Typical similarity measures are:

• cross-correlation

• sum of absolute difference

• Fourier-invariance properties such as phase correlation

• correlation of edge images

Some existing algorithms required assumptions on features, e.g., control points are easy to

identify. However, when those requirements are not met in real applications, more general algo-

rithms are preferable for dealing with various imaging situations so as that similarity metric can be

applied in a wide range of features, but not limited on the cases where the assumptions must be sat-

isfied. This idea naturally led to the introduction of mutual information as a registration measures

dating back to 1990s[90][91] as discussed in section 3.2.

If gray or intensity values are used as feature, a similarity is usually chosen to be more noise

robust. While features rather than intensity are selected, the effects of noise may be reduced to

some degree. Of course, this is paid for by the possibility that some valued variations or distortions

are not recogzied.
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– Optimization

Powell’s multidimensional direction set optimization seems to be the most commonly used method.

Stochastic optimization methods have shown their ability in some field, and been applied in regis-

tration, e.g. in [90]. Some registration system does not pay too much attention into optimization

procedure[92], although it is itself a problem being researched.
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3.2 Mutual Information Based Registration Methods

Maximization of mutual information appears to be a powerful registration methods[90]. It is an

intensity-based, rather than feature-based method and can date back to 1990s[88]. Essentially,

mutual information is a similarity metric between images, and therefore, it can also be viewd as a

distance. Three information theoretic metrics are commonly applied as similarity metric in image

registration.

• Entropy (read more papers)

• Mutual information

• Kullback relative entropy

3.2.1 Difficulties Encountered by Other Methods

Selection of features often has effect on the selection of similarity metric. And in fact, they together

play a key role in registration. From this point of view, selecting features is itself a problem.

For example, gradient-based methods or edge-based ones can have difficulties in images lacking

discontinuity, since neither edges or gradients are stable properites with respect to lighting changes.

Furthermore, how to extract features is still another problem. Even in the absence of noise, for

example, the defintion of edge points may be an ill problem, while the presence of noise will make

it more difficult to extract edges than we may expect. This becomes prominent especially in image

registration, as the features determine the quality in a certain sense.

The advantage of intensity-based methods over feature-based methods lies in the fact that it

can be applied to a wide variety of image modalities. This is orignated from the nature of mutual

information–it does not need any particular features information, while only intensity information

is used. However, mutual information is not panacean. Its drawback comes out of its advan-

tage in the sense that it takes each pixel as equal without taking into spatial information. Some
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researchers incorporated such information into mutual information based registration system and

have improved its performance [92][94].

3.2.2 Implement Mutual Information Based Algorithms

Mutual information-based registration methods can be formulated as [90][91]:

T̂ = arg max
T

I(T )

where

I(T ) = I(u(x), v(T (x))) (3.1)

here x is the coordinates, u(x) and v(x) are two images to be registered, or v(x) is the image to

be registered(also called a floating image), while the other u(x) is a model or a fiducial image(also

called the reference image). I(u, v) is defined as the mutual information between the two images

u and v:

I(u, v) = H(u) + H(v) − H(u, v) (3.2)

H(u) is the information entropy of u. Notice that u is a random variable denoting the gray value

of an image. The distribution of u will be used to calculte its entropy. Moreover, From (3.2), we

find that H(u) is a function of not only u explicitly, but also x implicitly, which is carrying spatial

information. It is true that different images could have the same entropy if only they are of the

same gray distribution while of totally different contents.

Among three basic elements of implementing mutual information based methods are sample

selection, probability distribution estimation, and interpolation [88][90][93][96] as discussed be-

low.
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Histogram Estimation

To estimate entropy of an image and further mutual information of two images, gray distribution

(probability density function: pdf, or probability mass function: pmf) need to be estimated firstly.

In literature, gray pdf or pmf is often used interchangeably with histogram [88][93]. For a single

image, histogram is estimated by two steps:

1. count the number of times each gray value occur in the image, and

2. divide those numbers by the total number of occurances.

For joint histogram of two images, it can be estimated by similar two steps:

1. Count the number of times each entry occurs

2. Divide each entry in the histogram by the total number of entries. Herein, ‘entry” is refered

to as a pair of gray values that corresponding pixels in the two images take on.

Parzen windows has been widely used in approximating histogram. Philippe[93] proposed to

use separable Parzen windows and showed that the selection of a Parzen window that satisfies the

partition of unity can simplify the estimating problem. It is Parzen windows that formulates the

mutual information criterion as a continuous and differentiable function of registration parameters.

Also, if marginal probability is calculated based on the estimated joint probability, then it will

explicitly depend on transformation T in equation (3.2). By introducing partition of unit constrait,

this effect can be avoided[93].

Viola et al.[90] proposed to estimate joint histogram on the basis of Parzen window formulated

by superposition of Gaussian density functions:

p(z) ≈ 1

NA

∑
zj∈A

Gψ(z − zj) (3.3)

This approximation of gray distribution allows for the derivation of estimating the entropy of an

image. Moreover, it enables stochastic maximization of mutual information.
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Sample Selection

Sample selection is to decide how many and which pixels will be used to estimate histogram.

Either all pixels, or a subset, or a superset [95] can be used. In case a superset of coordinates is

used, an interpolation method is needed to find the gray values of u(x) at coordinates that do not

coincide with any coordinate of v(x). In case a subset is used, a sub-sampling method is needed to

sample images, and thus to increase speed. It should be noted that some continuity of gray-values

has been assumed in mutual information based registration methods.

Interpolation

Jeffrey Tsao[96] think of mutual information based registration methods involve three steps: 1)

Estimate histogram, 2) Determine similarity metric, 3) Optimize the similarity metric with respect

to parameter T in [90]. Another technique usually involved in registration methods is interpolation

algorithm, which is needed to estimate the gray values at nongrid positions, whenever the voxel

grids of two images are not exactly aligned. The registration accuracy varies with interpolators.

Jeffrey Tsao[96] characterize the artifacts from the following eight interpolators and investgates

efficient strategies to overcome these artifacts:

• nearest neighbour

• linear

• cubic Catmull-Rom

• Hamming-windowed sinc

• partial volume

• NN with jittered sampling(JIT)

• NN with histogram blurring(BLUR)
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• NN with JIT and BLUR

In interpolation, nonidealities(e.g. noise) introduce errors to the interpolated voxel intensities. To

minimize these errors, data-consitent interpolator is often desired, so that the gray values at grid

positions do not change after interpolation. As a result, errors are only introduced at non-grid

positions during interpolation. This implies the amount of interpolation errors will vary with the

extent of interpolation.The variation may result in fluctuations in similarity metric and hence affect

registration accuracy. Jeffrey Tsao[96] found some methods are susceptible to such fluctuations.

Therefore, the selection of an interpolator for the purpose of image registration should take into

consideration not only the closeness of the interpolated image to the original one, but also the effect

of interpolation on similarity metric.

Interpolation, is not a basic element of registration methods, but has a significant effect on

registration accuracy [96][98]. Even it may cause misregistration for the local extrema without

interpolation or one not appropriate to similarity metric, mutual information. Also, interpolation

may be applied a great number of times during the registration process, therefore, it necessitates

a tradeoff between accuracy and speed. However, the task of yielding a final registered image

requires interpolation only once. Consequently, another interpolation may be more appropriate for

this task.

3.2.3 What Mutual Information Cannot Do

Mutual information serving as a good metric, and its capability in multimodal image registration,

rely on the assumption that regions of similar structures in one image would correspond to re-

gions in the other image consisting of similar structures. A lot of information theoretic algorithms

are based on only intensity information [88][90][91] [93][94][95]. This may bring the following

problems.

• Mutual information based methods, at least for the first glance, just make use of intensity

information. However, Images may contain meaningful objects which help register.
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• Mutual information in image registration is a distance metric. Besides its meaning in in-

formation theory, are there any physical meaning or geometrical meaning or else others?

Section 3.4 will discuss the derivation from ML to MI.

• New similarity metrics seems to have been able to make existing algrorithms adapted to

more wide range of registration problems, which almost always comes with new features.

From this point of view, we can try to propose new algorithms by exploring new features.

– Intensity was an existing feature, but most intensity-based methods are limited on spe-

cial kinds of problems.

– Content based, as mentioned before, may help even just simpler extraction methods are

used.
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3.3 Maximum Likelihood Based Registration Methods

Maximum Likelihood(ML) based registration methods have the same ability as Mutual informa-

tion(MI) based ones to register images from different imaging modalities.

3.3.1 A Multi-modal Image Registration Method

The underlying assumption is that the intensities in two images to be registered are probabilistically

related regardless of whether they are imaged from a single modality or multiple modalities. Based

on this assumption, two images are considered and defined to be registered when the likelihood

reaches its maximum value. To be consitent with nomenclature as used in section 3.2.2, ML can

be formulated as follows:

T̂ = arg max
T

L(T ) (3.4)

L(T ) = L(u(x), v(T (x))) (3.5)

Comparing (3.2) and (3.5) provides the insight that Both MI and ML are themselves similarity

metrics. In other words, Both of them improve registration performance, e.g., accuracy, by ap-

plying new similarity metrics. In particular, they work better than others in multi-modal image

registration, mostly because, the similarity metrics are more robust than others in dealing with

multimodal image registration.

Similar to MI metric[99], ML is also a full volume-based method since it does not require

feature extraction and relies on intensity information only. Also, both of them need to estimate

probability relation between two images.

In contrast to MI or other entropy techniques which have a lower bound but a variable bound

that is image content (or image data) dependent, ML has a lower bound of 0 and an upper bound

of 1. However, none of [99][100][101] has discussed this advantage, if it is of.
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3.3.2 Implemention of ML

Expression for ML

Assume two images u(x) and v(x) with gray values (u1, u2, . . . , um) and (v1, v2, . . . , vn) respec-

tively. A conditional probability density of wij = pv|u(vj |ui) can be constructed either by knowledge-

based or self-consitent techniques[99]. Then, L(T ) in equation (3.5) can be written as

Lv|u =
∏
x∈R

wv(x)|u(x) (3.6)

Where R is the overlapping region of the two images u(x) and v(x). The number of entries in

R may vary with registration parameter T , and sometimes R can be a subset of the overlapping

region. Consequently, the likelihood defined in (3.6) relies on the number of entries. To avoid this,

a normalized likelihood is often used

Lv|u =
1

N

∏
x∈R

wv(x)|u(x) (3.7)

where N is the number of entries.

Notice that wij < 1 and for the convenience of computation, a logarithmic likelihood is often

applied as in other ML estimation algorithms

Lv|u =
1

N

∑
x∈R

log (wv(x)|u(x)) (3.8)

Conditional pdf Estimation

One indispendible technique for MI and ML is intensity pdf estimation. MI methods estimate joint

pdf, while ML estimate conditional pdf.

One estimation method is so called “Knowledge-Based”. This technique requires some pairs of

images that have already been registered. One may get the statistics on the transition probabilities

according to registered images. This method can be extended to a general case where the the

statistics is stationary in the sense that it does not vary with different images. In such cases,
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statistics can be obtained from any well-registered images in advance. The probable problem here

is whether the statistics is stationary. However, it has been assumed whenever this method is used.

This may be especially useful if stationarity holds in some multi-modal registration problems.

Another method is so called “Self-Consistent” in that the overlapping region in current reg-

istration is used to calculate the transition probability used in calculating the likelihood in next

registration[99].

3.3.3 What is Left for ML

Are there any relations between MI and ML? ML needs to estimate conditional pdf, and MI joint

pdf. Conditional pdf is coherently related with joint pdf, so there may also be some coherent

relations between MI and ML in terms of similarity metric, performance.

Is it similar to MI in the sense that conditional pdf estimation plays a key role and hence inter-

polation is very important? Can we conduct some experements to verify the assumption underlying

ML, especially in multi-modal registration techniques?

74



3.4 Utilize Spatial Information

A drawback of mutual information is that the dependence of the gray values of neighboring voxels

is ignored, since the Shannon entropy is only determined by pdf of an image and joint pdf of the

two images. The condition of independence of gray intensities, although often assumed, does not

hold in general[88][92][94]. Spatial information on how gray intensities distribute across an image

has no effect on the calculation or estimation of pdf. Two images of the same pdf can be totally

different images in terms of content, imaging modes, etc.

3.4.1 Combine Multual Information with Gradient Information

Josien et al. proposed imparting gradient information as spatial information[94]. Assume the

image to be registered and the reference one will be prefiltered before registration. Let Gσ(x)

denote a gaussian kernel of scale σ (standard deviation). Then, the gradients of a gaussian-filtered

image can be calculated:

u̇(x) = �{u(x) � Gσ(x)} = u(x) � �Gσ(x) (3.9)

v̇(y) = �{u(y) � Gσ(y)} = u(y) � �Gσ(y) (3.10)

In [94], the gradients are calculated by convolving an image and the first derivative of Gaussian

kernel. After this, the angle between the gradient vectors at correponding pixels x and y is defined

α(x, y, σ) = arccos
u̇(x) · v̇(y)

|u̇(x)| · |v̇(y)| (3.11)

The gradients of the images from different modalities can point different directions but with the

same orientation while they are well registered. In view of this, [94] suggested using an angle

metric favoring the gradients with the same orientation

w(α) =
cos(2α) + 1

2
(3.12)
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The final similarity metric is the product of mutual information and gradient vectors

M(U, V ) = G(U, V )I(U, V ) (3.13)

G(U, V ) =
∑

(x,y)∈(U∩V )

w(α(x, y, σ)) · min(|u̇(x)|, |v̇(y)|) (3.14)

Equation (3.14) serves as the final similarity metric including spatial information. Mutiplica-

tion is prefered to addition, as addition of two terms requires normalization[94]. Both magnitude

and direction of gradient vectors contribute to the similarity metric. So the spatial information,

i.e. gradient vector in this case, defines four metrics which will effect the final registration qual-

ity. Modification on these four metrics will improve the performance of the whole registration

algorithm.

• The angle between two gradient vectors at corresponding pixels in equation (3.12)

• The multiplication in equation (3.13)

• The “min” and product of angle and magnitude in equation (3.14)

• The summation over the whole overlapping region in equation (3.14)

3.4.2 Formulate Spatial Information

Mert et al. started utilizing spatial information from maximum likelihood [92]. Define a function

s(x), then Mert developed a ML framework with additive Gaussian noise as follows

PV |U,T (V = v|U = u, T = t) =
∏

x∈U∩V
PW (x)[w(x) = u(x) − g(v(t(x)), s(x))] (3.15)

As a rule, taking logarithm to both sides of the above equation gives:

m(t) =
∑

x∈U∩V
log PW (x)[w(x) = u(x) − g(v(t(x)), s(x))] (3.16)
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The amazing result for (3.16) is that Mert proved the expectation of m(t) is equal to a certain

conditional entropy

E[m(t)] = −NHU |V,S(U(x)|V (x), S(x)) (3.17)

This may be the first step to build relationship between MI and ML.

One point worth noting is the function s(x) appearing in equation (3.15) and (3.16) incorporates

spatial information into information theoretic algorithms. This technique indeed, applies not only

in such algorithms, but also in any other algorithms that need spatial information. Detailedly, it is

implemented by function g(v(t(x)), s(x)). However, [92] did not give any idea on how to construct

application specific g(·).
Another point is the difference which lies between the definitions of ML in equation (3.15)

and (3.6). The former assumed additive Gaussian noise model, while the latter applies non-

parametric(sample based) technique to estimate pdf of an image or joint pdf. Sample based tech-

niques have been applied in many fields, e.g. example-based facial sketch generation[102]. For

non-parametric registration methods, there has not been papers discussing incorporating spatial

information into estimating (conditional) pdf in equation (3.6).

3.4.3 Spatial Information in Mutual Information Based Algorithms

Two ideas can be further developed for algorithms in [92]. One is to build the relationship between

ML and MI. It, if built under some constraits, can provide underlying basis for MI serving as a

similarity metric. Meanwhile, all methods applied together with ML imparting spatial information

can be applied with MI.

s(x) is the function carrying spatial information. Content based registration algorithms mod-

ify MI by setting s(x) a prior. On light of the fact that s(x) works essentially by adding useful

information, the problem of pluging spatial information into MI can be extended to

• Segmentation or content based registration
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• Application specific registration

• Human guided(aided) registration

Parametric models usually represent kinds of deformation by a moderate number of parameters[104].

It is customary to apply parametric models into those deformation problems, where they can be

well represented by only a small number of parameters[103]. Examples include spline, wavelet ,

etc. The drawback of the parametric methods is the restriction of the allowed deformation space.

Nonparametric methods on the contrary, is totally unconstricted regarding the deformation space.

However, despite this advantage, there seems to be more room for nonparametric methods. Only a

limited number of papers applied nonparametric methods in registration.
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Chapter 4

Implementation and Modification of

Existing Algorithms

4.1 Software Specifics

The software includes those parts similar to what are described above comprising mutual informa-

tion based registration algorithms.

• I/O. Read and/or Write image files from and/or to storage media.

• Interpolation. Linear interpolation is utilized at this point.

• Optimization. Modified Powell direction set is applied.

• Pdf(Probability Density Function) Estimation. At this point, (joint)normalized histogram is

simply used as (joint) pdf.

• Entropy calculation.
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4.1.1 Developing/Testing Environment Specifics

All source code was programmed in C/C++ on Linux.

• Image size: 640×480

• Image format: 256-level gray images

• Operating System: Linux version 2.4.21-20.EL (Red Hat Linux 3.2.3-42)

• Compiler: gcc version 3.2.3 20030502

4.1.2 Problems Encountered in Testing Data

Optimization is an indispensible element in registration and hence it will definitely effect the regis-

tration quality. But, optimization is not all of the problems registration is supposed to solve. Many

existing algorithms choose a certain optimization algorithm according to their applications. Or,

they just choose the popular method, e.g. Powell routine, to optimize their objective functions[88].

Powell method is able to guarantee the convengence of quadratic forms [105][106], while, it says

nothing on convegence of general multiple dimension optimization problems.

Powell’s method has been applied in testing images. It is composed of two parts, the first one

conjugate direction search, the second one line minimization along one direction. Line minimiza-

tion calls a routine program for initially bracketing a minimum, which is denoted as

void mnbrak(double ∗ ax, double ∗ bx, double ∗ cx,

double ∗ fa, double ∗ fb, double ∗ fc,

double(∗func)(double))

This routine can bracket the minimum of a function into a region [ax, cx]. Experimental result

shows it works well in some “ideal” cases, but not in the data used in this report.
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Table 4.1: Real optimization process.

number of pixels in mutual information

overlapping area

307200 0.000000

306720 0.248788

126483 0.305751

5001 0.998649

1017 1.645018

640 3.666301

Table 4.1 shows the number of pixels in the overlapping area between a reference image and

a float image, and the corresponding mutual information. The search space is chosen to be affine

transformation with initial values set to 0. However, this optimization does not account for the

difference between the two images. In fact, the optimization process has not been on the right

track from the beginning in this particular case. The reason is that the bracketing function mnbrak

has not worked as it is expected. In other words, it often brackets the local minimum instead of the

global one into a certain region along a direction.

4.2 Modified Powell’s Method

As mentioned in section 4.1.2, the line minimization does not work well partially because mnbrak

does not work as expected. At this point, two directions have been tried to fix up such a problem.

The underlying idea is either try to make mnbrak work or otherwise give it up.
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4.2.1 Optimize with a Meaningful Initial Value

To make Powell work, [95] assumes we are able to select an initial value inside the atraction pool of

the minimum. Stimulated by this idea, we can also choose a “good” initial value knowing a priori

information. We tested this method on two consective frames of a video sequence and the result

is shown in table 4.2. We can see from the table that a “good” initial value does good for our line

optimization.

Table 4.2: Optimization with meaningful initial value.

number of pixels in mutual information

overlapping area

306081 2.519544

153280 0.178674

479 2.590159

306560 2.640276

306082 2.773243

306081 2.870510

4.2.2 Exhaustive Search of Line Minimization

The alternative way is to give up mnbrak. A natural modification is exhaustive search as applied

in literature[92]. Here, we still utilize Powell’s frame of conjugate direction search but substitute

brent method for a exhaustive search, Please refer to [106] for brent method. Unfortunately, It still

can not guarantee the convergence of Powell’s algorithm. Viewing this point, a good initial value
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is preset based on a priori knowledge. We tested this modified Powell’s method by the following

steps:

• Rotate an image by a certain angle, e.g., π/6, and set it as a float image.

• Set the rotation angle of initial affine transformation to π/5.8.

• Set the translation of initial affine transformation to 0.

• Apply Powell’s method with exhaustive line search.

• End optimization when the increase of mutual information is sufficiently small.

Table 4.3 shows the optimization process with the above steps. The final transformation pa-

rameter is shown as affine matrix in equation 4.1. Fig. 4.1(a) shows the reference image to which

Fig. 4.1(b) is registered and the registration result is shown in Fig. 4.1(c).

A =


 0.866712 −0.495409 −1.647553

0.505554 0.856857 −1.002103


 (4.1)

Exhaustive line search can not make sure Powell’s method converges to the global minimum, but

it is able to avoid the problem mnbrak could encounter that wrong bracketing may mislead the

entire optimization process.

At this point, there are two problems left on optimization. One is how to choose initial value

by a priori knowledge, the other one is “exhaustive search”. Since the notorious difficulty of the

former, we come to focus on the latter. The line minimization along a direction can be viewed as

a one-dim problem. Unfortunately, none of the deterministic existing methods can guarantee the

convergence to the global minimum if we know nothing on mutual information as a function of

affine transformation parameters. From this point of view, “exhaustive” search is not theoretically

feasible at all. Researchers have tried formulating mutual information a continuous(or furthur

more, a sufficiently smooth) function, which would allow for the “exhaustive” search [93].
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(a) The reference image (b) The float image

(c) The registered image

Figure 4.1: Registration result
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Table 4.3: Optimization with exhaustive line search.

number of pixels in mutual information

overlapping area

22871 0.520090

62302 0.392120

114015 0.353082

171202 0.662163

169064 1.746670

170054 2.482787
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